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Abstract. By extracting combinatorial structures in well-solved nonlinear combinatorial op-
timization problems, Murota (1996,1998) introduced the concepts of M-convexity and L-
convexity to functions defined over the integer lattice. Recently, Murota—Shioura (2000, 2001)
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fined over the real space, and provide a proof for the conjugacy relationship between general
M-convex and L-convex functions.

Key words. combinatorial optimization — matroid — base polyhedron — convex function —
convex analysis

1. Introduction

Combinatorial optimization problems with nonlinear objective functions have
been dealt with more often than before due to theoretical interest and the needs
of practical applications. Extensive studies have been done for revealing the
essence of the well-solvability in nonlinear combinatorial optimization problems
[2,4,6-8,12,13,21]. By extracting combinatorial structures in well-solved nonlin-
ear combinatorial optimization problems, Murota [9,10] introduced the concepts
of M-convexity and L-convexity for functions defined over the integer lattice; sub-
sequently, their variants called Mf-convexity and Li-convexity were introduced
by Murota Shioura [14] and by Fujishige Murota [5], respectively. Applications
of M-/L-convexity can be found in mathematical economics with indivisible com-
modities [3,18,19], system analysis by mixed polynomial matrices [11], etc. Re-
cently, Murota—Shioura [15,16] extended these concepts to polyhedral convex
functions and quadratic functions defined over the real space. In this paper, we
consider a further extension to more general convex functions defined over the
real space.
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The concepts of M-convexity and L-convexity are defined for polyhedral con-
vex functions and quadratic functions as follows. Let n be a positive integer,
and put N ={1,2,...,n}. A polyhedral convex function (or quadratic function)
f:R" = RU{+00} is said to be M-convex if dom f is nonempty and f satisfies
(M-EXC):

(M-EXC) Vz,y € dom f, Vi € supp™ (x—y), 3j € supp~ (z—y), Jag > O:

f@)+f(y) > fla—alxi—x;)+fly+alxi—x;))  (Va €[0,a0]), (1.1)
where

dom f = {z € R" | f(z) < +00},
supp™ (z —y) ={i € N [ x(i) > y(i)}, supp™(z —y) ={i € N |z(i) <y(i)},

x(#) is the i-th component of a vector z € R™ for i € N, and x; € {0,1}" is the
i-th unit vector for i« € N. On the other hand, a polyhedral convex function (or
quadratic function) ¢ : R™ — RU{+0o0} is said to be L-convex if dom g # §) and
g satisfies (LF1) and (LF2):

(LF1)  g(p)+g(a) > g(pAa)+g(pVa) (Vp, q € dompg),
(LF2) 3r € R such that g(p+A1) = g(p)+Ar (Vp € domyg, YA € R),

where p A q,pV q € R™ are defined by

(p A q)(i) = min{p(i),q(1)}, (pV q)(i) = max{p(i). q(i)} (i€ N),

and 1 € R" is the vector with all components equal to one.

To fully cover the well-solved nonlinear combinatorial optimization problems,
it is desirable to further extend these concepts to more general convex functions
defined over the real space on the basis of (M-EXC), and (LF1) and (LF2), re-
spectively. It can be easily imagined that the previous results of M- /L-convexity
for polyhedral convex functions and quadratic functions naturally extend to more
general M-/L-convex functions. In particular, it is natural to imagine that the
conjugacy relationship holds for general M-convex and L-convex functions over
the real space, as in the cases of functions over the integer lattice [10, Th. 4.24],
polyhedral convex functions [15, Th. 5.1], and quadratic functions [16, Th. 4.1].
However, the proof cannot be extended so directly to general M-/L-convex func-
tions, but some technical difficulties such as topological issues arise. By taking
such technical difficulties into consideration, we define M-convex and L-convex
functions over the real space as convex functions satisfying (M-EXC), and (LF1)
and (LF2), respectively. The primary contribution of this paper is to provide a
rigorous proof of the following conjugacy relationship between general M-convex
and L-convex functions over the real space.

Theorem 1.1. For f : R" — R U {400} with dom f # 0, define its conjugate
function f*: R™ — R U {+o0} by

[*(p) =sup{(p,x) — f(z) [z € R"}  (peR"), (1.2)
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where (p,xy =Y i p(i)z(i).

(i) If f is a closed proper M-convex function, then f® is a closed proper L-convex
function with (f*)* = f.

(ii) If g is a closed proper L-convex function, then g* is a closed proper M-convex
function with (g°)® = g.

(iii) The mappings f — f* (f : M-convezr) and g — ¢* (g : L-convez) provide
a one-to-one correspondence between the classes of closed proper M-convex and
L-convex functions, and are the inverses of each other.

We also show that a conjugate pair of closed proper M-convex and L-convex
functions arise from the minimum cost flow/tension problems.

The organization of this paper is as follows. In Section 2 we provide the pre-
cise definitions of M-/M?%-convex and L-/Lf-convex functions, and show various
examples of these functions. The conjugacy relationship between M- /L-convexity
is proven in Section 3.

In this paper, we focus on the conjugacy relationship between M-convex
and L-convex functions. See [17] for other properties of M-convex and L-convex
functions in continuous variables.

2. M-convex and L-convex Functions over the Real Space
2.1. Definitions of M-conver and L-convex Functions

Let f: R®™ — R U {£oo} be a function. A function f is said to be convez if its
epigraph {(z,a) € R" xR | @ > f(x)} is a convex set. A convex function f
with f > —oo is said to be proper if dom f # (}, and closed if its epigraph is a
closed set. We denote by arg min f the set of minimizers of f, i.e., argmin f =
{z e R"| f(z) < f(y) (Yy € R™)}, which can be the empty set.

Proposition 2.1. For a closed proper convex function f : R™ — R U {400},
any level set {x € R™ | f(z) <n} (n € R) is a closed set, and argmin f # () if
dom f is bounded.

Let f: R® — R U {400} be a convex function and z € dom f. The subdif-
ferential of f at z, denoted by df(z), is defined as
of(x) ={peR" | f(y) = f(z) + (p,y — =) (Vy e R")}.
For d € R™, the directional derivative of f at x w.r.t. d is defined by

F(@id) = lim{f(z +ad) = ()} /a.

We call a function f: R” — RU{+0o0} M-convez if it is convex and satisfies
(M-EXC); we say that f is closed proper M-convez if it is closed proper convex,
in addition. The effective domain dom f of a closed proper M-convex function
f is contained in a hyperplane {x € R™ | (N) = r} for some r € R, where

2(N) =32, (i)



4 Kazuo Murota, Akiyoshi Shioura

Proposition 2.2. If f is closed proper M-convez, then x(N) = y(N) for all
z,y € dom f.

Proof. To the contrary assume z(N) > y(N) for some z,y € dom f. Put

S={zeR"|zny<z<zVvy, f(z) <max{f(z), f(y)}},

which is a bounded closed set. Let x.,y. € S minimize the value ||z. — y«|l1
among all pairs of vectors in S with z,(N) = z(N) and y.(N) = y(N). The
property (M-EXC) for z, and y. implies

2max{f(z), f(y)} > f(z)+f(ys) > fl@—alxi—x;))+f(y«talxi—x;)) (2.1)

for some i € supp™ (2« — y.), j € supp™ (7« — ¥x), and a sufficiently small a > 0.
Putting ¥ =z — a(xi — x;) and ¥ = y« + a(xi — X;), we have T(N) = z.(N),
Y(N) = y«(N). Moreover, (2.1) implies 7 € S or ¥ € S, a contradiction to the
choice of z, and y. since ||ZT—y.||1 < ||z« —y«||1 and ||z« =71 < ||z« —ys|[r- O

Hence, a closed proper M-convex function loses no information other than r
when projected onto an (n — 1)-dimensional space. We call a function f: R™ —

R U {+00} M:-convez if the function f: R"*! — R U {400} defined by

Iy _ f(T) (T €R" zpp1 €R, Tpp1 = _J"(N))a
Fl@ oni) = {—I—oo (otherwise)

is M-convex; we say that f is closed proper M*-convez if it is closed proper
convex, in addition.

Remark 2.3. The property (M-EXC) alone is independent of good properties
such as convexity and continuity. Let ¢ : R — R be a function satisfying so-
called Jensen’s equation:

ela) +o(B) =2¢((x+p)/2) (Yo, €R). (2.2)

It is known that there are discontinuous and nonconvex functions satisfying
Jensen’s equation (see, e.g., [1, pp. 43-48], [22, p. 217]). Consider such a function
¢, and define f: R? — RU {4} by

fla(1),2(2)) = {gp(x(l)) ((z(1),2(2)) € R?, z(1) +2(2) = 0), (2.3)

+o0o  (otherwise).

Then, (M-EXC) for f follows immediately from Jensen’s equation for ¢; however,
f is neither convex nor continuous. a

On the other hand, we call a function g : R — R U {400} L-convez if g
is a convex function satisfying (LF1) and (LF2); we say that g is closed proper
L-convez if it is closed proper convex, in addition. Due to the property (LF2),
an L-convex function loses no information other than r when restricted to a
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hyperplane {p € R™ | p(i) = 0} for any i € N. We call a function g : R" —
R U {+00} L*-convez if the function §: R*™! — R U {+oo} defined by

90, pn+1) =9 —pnr1l) (@ €R", pry1 €R)

is L-convex; we say that ¢ is closed proper LF-convez if it is closed proper convex,
in addition.

Remark 2.4. The properties (LF1) and (LF2) are independent of convexity and
continuity. Consider a function ¢ : R — R satisfying Jensen’s equation (2.2)
such that 1/ is neither continuous nor convex. Define a function g : R? — R U
{+o0} as

9(p(1),p(2)) = »(p(1) =p(2)) ((p(1),p(2)) € R?). (2.4)
Then, g satisfies the submodular inequality (LF1) with equality and (LF2) with
r = 0, and is neither convex nor continuous. a

In the following discussion, we mainly consider the classes of closed proper
M- /L-/M?- /Lf-convex functions. We denote by M,, (resp. £,,) the class of closed
proper M-convex (resp. L-convex) functions in n variables:

M, ={f|f:R"— RU{+o0}, closed proper M-convex},
L, ={g]9:R"— RU{+o0}, closed proper L-convex}.

We define M? and L% to be the classes of closed proper M‘-convex and L‘-
convex functions, respectively. As is obvious from the definitions, closed proper
M?-convex (resp. Lh—convex) function is essentially equivalent to closed proper M-
convex (resp. L-convex) function, whereas the class of closed proper M¢-convex
(resp. Lh—convex) functions contains that of closed proper M-convex (resp. L-
convex) functions as a proper subclass. These relationships can be summarized
as
Mp C ML Myyy, Lo CLY ~ L.

2.2. Ezxamples

M-/Mf-convex and L-/Li-convex functions have rich examples [12,13,15,16].

Example 2.5 (affine functions). For py € R™ and 8 € R, the function f: R" —
R U {+o0} given by f(z) = (pg,x) + 8 (z € dom f) is closed proper M-convex
or closed proper Mi-convex according as dom f = {z € R" | z(N) = 0} or
dom f = R"™. For zg € R™ and v € R, the function g : R" — RU {400} given
by g(p) = (p,x0) +v (p € R™) is closed proper L-convex as well as closed proper
L?-convex. a

We denote by C! the class of univariate closed proper convex functions, i.e.,
C'={p:R = RU{+o0} | p: closed proper convex}.

Recall that the conjugate function f* of a function f is defined by (1.2).
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Ezample 2.6. For o, € C!, the functions f,g: R* — RU {+o0} given by (2.3)
and (2.4), respectively, are closed proper M-convex and closed proper L-convex,
respectively. Moreover, if ¢ and 1) are conjugate to each other, then f and g are
conjugate to each other. O

Example 2.7 (separable-convex functions). Let fi € C' (i € N) be a family of
univariate closed proper convex functions. The function f : R” — R U {+o0}
defined by

fx) = Zfi(fv(i)) (z € R")

is closed proper Mf-convex as well as closed proper Li-convex. The restriction
f of f to the hyperplane {z € R" | (N) = 0} is closed proper M-convex if its
effective domain is nonempty.

For functions g;; € C' indexed by i, j € N, the function g : R — RU{+o0}
defined by

g(p) = Z Zgij(p(j) -p(i)) (peR")

is closed proper L-convex with r = 0 in (LF2) if dom g # 0.
Proof. M!-convexity of f and M-convexity of f follow from the inequality
fila) + fi(B) = fila+6) + fi(B—6)

for any a, 8 € R with a < 8 and any § € [0, 8 — a], whereas L-convexity of g is
by the inequality

9ii (A = 1) + 955N — 1) = g5 (A = 1) + gi;(N = p)
for any A, N, p, 1/ € R with A > N, pu < /. Li-convexity of f is a special case

of L-convexity of g (see the definition of Lf-convex functions). O

Ezample 2.8 (quadratic functions). Let A = (a(i, 7))} ;—; € R™*" be a symmet-
ric matrix. Define a quadratic function f : R” — R by f(z) = (1/2)2T Az
(z € R™). Then, f is M-convex if and only if

zTa; > min{0, min 2Ta;} (Vzr € R™, Vi € supp™ (1)),
JE€supp~ (z)

where a; denotes the i-th column of A for i € N. The function f is Lf-convex if
and only if

n

a(i,j) <0 (Vi,jeN, i#j), Y ali.j)=0 (VjeN).

=1

See [16] for proofs. 0
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Ezample 2.9 (minimum cost flow/tension problems). M-/L-convex functions arise
from the minimum cost flow/tension problems with nonlinear cost functions.

Let G = (V, A) be a directed graph with a specified vertex subset T' C V.
Suppose that we are given a family of convex functions f, € C* (a € A), each of
which represents the cost of flow on arc a. A vector ¢ € R4 is called a flow, and
the boundary 9¢ € RV of a flow ¢ is given by

0¢(v) = Z{f(a) | arc a leaves v} — Z{f(a) | arc a enters v} (veV).

Then, the minimum cost of a flow that realizes a supply/demand vector x € RT
is represented by a function f: RT — R U {#oc} defined as

flx) = ilglf{z fa(€(@)) | (9§)(v) = —2(v) (v €T), (9€)(v) =0 (v e VAT)}.

a€A

On the other hand, suppose that we are given another family of convex
functions g, € C' (a € A), each of which represents the cost of tension on arc
a. Any vector p € RV is called a potential, and the coboundary dp € R4 of
a potential p is defined by dp(a) = p(u) — p(v) for a = (u,v) € A. Then, the
minimum cost of a tension that realizes a potential vector p € RT is represented
by a function g : RT — R U {#o00} defined as

9(p) = innzg{z ga(n(a)) | n(a) = =ép(a) (a € A), p(v) = p(v) (v € T)}.
" acA

It can be shown that both f and g are closed proper convex if f(zy) and
g(po) are finite for some 7o € RT and py € RT, which is a direct extension of
the results in Iri [6] and Rockafellar [21] for the case of |T'| = 2. These functions,
however, are equipped with different combinatorial structures; f is M-convex
and g is L-convex, as follows.

Theorem 2.10. If f, and g, are conjugate to each other for all a € A, then f
and g are closed proper M-conver and closed proper L-convez, respectively, and
conjugate to each other, where it is assumed that at least one of the following
conditions holds:

(a) —oo < f(wo) < +o0 for some o € RT,
(b) —o00 < g(po) < +00 for some py € RT,
(¢) f(z0) < +00,9(po) < +oc for some zg € RT,py € RT.

We first prove the closedness of f and g and the conjugacy relationship. For
this, we use the following duality theorem for the minimum cost flow/tension
problems.

Theorem 2.11 (cf. [21, Sec. 8H]). Let G = (V, A) be a directed graph with
a specified verter subset T C V. Also, let fq, 94 € Ct (a € A) and f,, g, € C*
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(v €T) be conjugate pairs of closed convex functions. Then, we have

. (08)(v) = —x(v) (veT),
15171;{ Z fa(§(a)) + Z fo(z(v)) ‘ (0)(w) =0 (v e V\T) }

acA veT

—sup{ S @) - Xl 70) | nla) = -70) (a € )}

P acA veT

unless inf = 400 and sup = —oo.

Lemma 2.12. Let x € RT and p € RT.
(i) f@) = g.(x) if f(l”) < +o0 or g(po) < 400 for some py € RT.
(ii) g(p) = f*(p) if g(p) < +o0 or f(xg) < +oo for some rg € RY.

Proof. To prove (i), consider functions f,, g, € C! (v € T') given as

_ 0 (=), _
o) ={l Gz ap=aws (Ger)
for the given € R”. The functions f, and g, are conjugate to each other for
each v € T. If f(z) < +oc or g(pg) < +oo for some py € RT, then Theorem
2.11 implies that

_ o | 090) = —2'(0) we T,
@) =i { e+ S | Go 200N}

—sup{ 3 0)e0) = Y- au(u@) | n(0) = ~57(0) (a € )}

veT acA
=sup{(p,x) —g(p) [P ERT} = ¢°(x).
The proof for (ii) is similar to that for (i) and therefore omitted. O

Suppose f(z¢) < +oco holds for some zq € RT. By Lemma 2.12 (i) we have
f(z¢) > —oo if and only if g(py) < +oo for some py € RT. This shows that
the condition (a) is equivalent to (c). We can show the equivalence between (b)
and (c) in the similar way by using Lemma 2.12 (ii). Hence, Lemma 2.12 implies
that if one of conditions (a), (b) and (c) holds, then we have f = ¢* and g = f*.
This conjugacy relationship shows that f and g are closed proper convex, in
particular.

We then prove the M-convexity of f and the L-convexity of g.

[(M-EXC) for f] Let z,y € dom f and u € supp™(z — y). For any € > 0 and
z € {x,y}, there exist £, € R4 with

Y faléa(@) < f(2)Fe,  (06)(0) = —2(v) (v €T), (9&:)(v) =0 (ve V\T).

acA

By a standard augmenting path argument, there exist 7 € {0,£1}* and v €
supp (z — y) (C T) such that

supp ' (7) C supp™ (&, — &), supp” (7) Csupp (& — &), OT = Xu — Xos
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where we can assume the following inequality with m = |A], n = |V

min{[&.(a) — &y (a)| [ a € A, 7(a) = £1} > (2(u) — y(u))/m".

Putting ap = (z(u) — y(u))/m™, we have

fa(&a(a) + am(a)) + fa(§y(a) — am(a)) < fa(&e(a)) + fa(§y(a)) (o € [0, a0])

for all a € A. Hence it follows that

Jr —alxy — x0)) + fy+ alxe — X))
<Y [faléala) + am(a)) + fa(éy(a) — an(a))]

a€A

<Y faléal@) + fal&ya)] < fl@)+f(y)+2e (€ [0,00)).

acA

Since € > 0 can be chosen arbitrarily and T is a finite set, there exists some
v = v, satisfying

Jx—olxu—xo)+ f+alxe—x0) < f@)+ fly) (o€ 0,a0)),

implying (M-EXC) for f.
[L-convexity for g] Let p,q € domg. For any € > 0 there exist p,¢ € RV with

> 9a(=0p(a)) < g(p) +&, Bv) =p(v) (v E€T),

acA

> 9u(—03(0)) < gla) + =, ) = q(v) (v € T).

acA

It holds that (PA q)(v) = (A Q(v), PV Q@)= (pV q)(v) for all v € T, and
9a(—0(P A @)(a)) + ga(=6(pV Q)(a)) < ga(—6p(a)) + ga(—0q(a))  (a € A)

by convexity of g,. Hence it follows that

9PA)+9(Va) <D gu(=5FEAD (@) + Y ga(—6(FV 7)(a))

acA acA
<Y 9a(-05(a)) + > ga(—64(a)) < g(p) + glq) + 2¢.
acA acA

Since € > 0 can be chosen arbitrarily, we have g(p) + g(¢) > g(p A q¢) + g(p V q),
implying (LF1) for g. The property (LF2) for g is immediate from the equation
§(p+ A1) = 6p for p € RV and X € R. O
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3. Proof of Conjugacy Relationship

In this section, we prove Theorem 1.1, the main result of this paper.
The conjugacy operation f +— f* given by (1.2) induces a symmetric one-to-
one correspondence in the class of all closed proper convex functions on R™.

Theorem 3.1 ([20, Th. 12.2]). For a closed proper convex function f : R™ —
R U {+o0}, its conjugate f* : R™ — R U {400} is also a closed proper convex
function with f** = f.

By Theorem 3.1, it remains to show that “f € M, = f* € L,” and
“g€ Ly, = g* € M.

3.1. Proof of “f e M,, = f* € L,”

Let f € M,,. To prove (LF2) for f*, we put r = 2(N) with some z € dom f,
which is independent of the choice of x by Proposition 2.2. For p € dom f* and
A € R, we have

F(p+ A1) = sup{(p+ AL,z) — f(z) | & € dom f}
— sup{(p,2) — f(x) | v € dom f} + Aa(N) = f*(p)+ M,

implying (LF2) for f°.

To prove the submodularity (LF1) for f®, we may assume that dom f is
bounded. The case where dom f is unbounded can be reduced to the case of
bounded dom f as follows. For a fixed vector zg € dom f, we define f : R" —

RU {+00} (k=1,2,...) by
Jula) = {f@) (i || — zo|oo < k).

+0o (otherwise).
Since fr € M,, and dom f}, is bounded, fp fulfills (LF1).

Let p € dom f*. By the definition of fi, it is easy to see that f®(p) >
f2(p). For any € > 0, there exists z. € dom f with f*(p) —e < (p,z.) — f(ze),
implying f*(p) —¢ < fg(p) for any k > [|z. — 2¢[|c- Therefore, we have f*(p) =

Hence, for any p,q € dom f* it holds that

f2 ) + f*(a) = lim {fi(p) + f7(a)}
> lim {fi(pAa)+ fi(pVa)} = f*(pAa)+ f*(pVa)
i.e., the submodularity (LF1) holds for f°.
We now assume that dom f is bounded and prove the submodularity (LF1)

for f®. Since dom f* = R", the submodularity of f*® is equivalent to the local
submodularity (see, e.g., [15, Th. 4.27]):

[P+ M) + oo+ uxg) > ) + 2o+ A + 1x;), (3.1)

where p € R", 7,7 € N are distinct indices, and A, ;¢ are nonnegative reals. The
proof of local submodularity (3.1) for f* consists of the following steps.
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1. Fix p € R" and i, j € N, and define functions g, f : R2 — R U {400} by

gpm) = f*p+ i +npx;) (ApeER), (3.2)
fle,p) = inf{f(z) — (p,2) | x € dom f, (i) = @, 2(j) = S}
(. ER). (3.3)

Then, g = (f)* (Lemma 3.2).
2. (M-EXC) for f implies supermodularity of f (Proposition 3.4, Lemma 3.5).
3. Supermodularity of f implies submodularity of (j~)‘ (Proposition 3.6).
4. Submodularity of g immediately implies local submodularity (3.1).

Lemma 3.2. The functions § and f given by (3.2) and (3.3), respectively, satisfy
g=(f)°".
Proof.

(/)*(\, p) = sup{Aa+ puf — f(o, B) | a,3 € R}
= sup{ Az (i) + px(j) + (p,z) — f(z) | € dom f}
= [0+ i +1xj) = G\ ).
0

Proposition 3.3 ([20, Cor. 7.5.1]). Let f : R® — R U {+o0} be a closed
proper convex function. For x € R™ and y € dom f, we have

fz) =lim f(Az + (1 = A)y).
Proposition 3.4. Let f : R" — R U {400} be a closed proper convex function
satisfying the property:
(M-PO0) Vz,y € dom f with x >y, Vi € supp™ (z — y), Jag > 0:
f@)+fy) = fl@—axi)+ fly+axi)  (a€0,m)).

Then, f satisfies the supermodular inequality:

f@)+fly) < fl@ny)+ flzvy)  (z,y €R). (3.4)

In particular, a closed proper M:-convex function satisfies the supermodular in-
equality (3.4).

Proof. Note that an M?-convex function satisfies the property (M-P0). Hence,
it suffices to show the former claim only.

To show the supermodularity of f, we first prove that (M-P0) implies the
following stronger property:

(M-P1) Vz,y € dom f with x > y, Vi € supp™ (z — y):
f@)+ f(y) = fl@ = (x(i) —y(@)xi) + fy+ (x() —y(@)xi)-  (3.5)
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Put @ = z(i) — y(i), and define functions ¢, ¢, : [0,a] — RU {+c0} by

pu(a) = flx—axi), @yla) = fly+@—a)xi) (ac[0,a]).

Claim 1. Let a € [0,@].
(i) If g (a) < 400, then ¢ ((a +@)/2) < +o0.
(ii) If ¢y (o) < 400, then ¢, (a/2) < +oo.

[Proof of Claim 1]  We prove (i) only, where we may assume o < a. Put
T =u1x— ay; and

e =sup{B|0< B < (@—)/2, f(Z—Bxi)+ fly+Bxi) < fF(@)+ fly)}-

The value f(Z—08x;)+ f(y+5x:) is a proper closed convex function in 3. Hence,
Propositions 2.1 and 3.3 imply that the value «. is well-defined and satisfies

(@ = auxi) + fly + awxq) < f(@) + fy). (3.6)

Assume, to the contrary, that a. < (@ — «)/2 (= (Z(i) — y(i))/2). Then, we
have i € suppt ((Z — axi) — (¥ + @ Xi)), and therefore (M-P0) for Z — . x; and
y + . x; implies that there exists a sufficiently small 3 > 0 satisfying

J(@ = auxi) + fy+ auxi) > f(Z — awxi — Bxi) + f(y + awxi + Bxi)-

From this inequality and (3.6) follows

F@) + fy) = (@ — (s + B)xi) + f(y + (o + B)xi),
a contradiction to the choice of a.. Hence, we have a,. = (@ — «)/2. By (3.6), it
holds that ¢, (0 +@)/2) = @u (4 aw) = f(T —axx;) < +oo. [End of Claim 1]
Since ¢, and ¢, are convex functions with ¢;(0) < +o0, ¢, (@) < +o0,
repeated application of Claim 1 yields
vz(a) < 400 (0 <Va<a), py(a) < +o0 (0 < Va <@). (3.7)
We then define a function ¢ : [0,a] — RU {+o00} by

p(a) = pu(a) = py(a) (o€ [0,a)).

By Proposition 3.3 and (3.7), ¢ is continuous in the interval {a | 0 < a < @},
and satisfies

p(0) = lim pla). @)= gTrgw(a)- (3.8)

Claim 2. ¢'(a;1) <0, ¢'(a;—1) >0 (0 < Va < @).

[Proof of Claim 2] By (3.7) and the convexity of ¢, and ¢,, the directional
derivatives ¢'(a; £1) = ¢ (a; 1) — ¢ (a; £1) are well-defined for all a with
0 < a < @. We here prove ¢’(a;1) < 0 only since ¢'(a; —1) > 0 can be proven
similarly. Putting ' = = — ay; and y§ = y + {@ — a — d}x; for a sufficiently
small § > 0, we have ¢ € supp™t(z/ — yj). By (M-P0), there exists some 35 > 0
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such that f(a') + f(s}) = f(' = Bxi) + F(uh + Bxa) (V8 € [0,B)), implying
¢y (1) < —¢f (a+ d; —1). Hence it follows

' A eye 3 / . — o (v
@m(aa 1) < 7%%13074((1 +6a 71) - goy(a, 1)7

which shows ¢’(a;1) <O0. [End of Claim 2]

Claim 2 and (3.8) imply that ¢(«) is nonincreasing w.r.t. « in the interval
[0,@]. Hence, we have

f(@) = fly +ax:) = ¢(0) > (@) = f(z —ax:) = f(y),

i.e., (3.5) holds. This shows the property (M-P1).

We now prove the supermodularity of f by using the property (M-P1). The
proof is by induction on the cardinality of the sets supp™ (z—y) and supp™ (z—y).
We may assume z Ay, zVy € dom f, |[supp™(x —y)| > 1, and |supp™ (z —y)| > 1
since otherwise the supermodular inequality (3.4) holds immediately.

We first consider the case where |supp™(z — y)| = 1. Let i € N be the
element with supp™(z — y) = {i}. Putting 2’ = x Vy and ¢/ = = Ay, we
have y = o’ — (2/(4) — ¥'(4))x: and @ = v’ + (2'(¢) — y'(¢))xi. Therefore, the
supermodular inequality (3.4) follows immediately from (M-P1). The case where
|[supp~ (x — y)| = 1 can be dealt with similarly by interchanging the roles of z
and y.

We then consider the case where |supp™ (z —y)| > 1 and |supp™ (z —y)| > 1.
Let i € supp™(z —y). Then, we have (z Ay)+ (z(i) —y(i))x; € dom f by (M-P1)
and the induction assumption implies

fly) = fleAy) < fly+ (2(@) —y(@)xi) — F((z Ay) + (2(0) —y(i)xi)
< flxvy) — f(z).

O

Lemma 3.5. If f € M,, and dom f is bounded, then the function f: R? —
R U {+0c0} given by (5.3) satisfies the property (M-PO) in Proposition 3.4.

Proof. We may assume p = 0 since f(z) — (p, x) is also M-convex as a function
in 2 and since the claim is shown by using the property (M-EXC) only. It suffices
to show that for any («, ), (&, #') € dom }’Vwith a > o and B > (3, there exists
do > 0 satisfying

flo,B) + f(o.8') = fla=0,8) + f(o' +6,5) (V0 €[0,60]).

Since f is a closed proper convex function with bounded effective domain, we
can show by using Proposition 2.1 that there exist x,2’ € dom f satisfying

2(i) = o, 2(j) = B, fla, B) = f(z), and 2/ (i) = o, ' (j) = B, f(o', 3) = f(2'),
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respectively. Since i € supp'(z — ), (M-EXC) for f implies that there exist
k € supp™ (z — 2’) and o > 0 satisfying

fla,B)+ f(o, ') = f(a) + f(2)
> fx =00 —xk) + f(@" +(xi — xx))

> fla—6,8)+ fla' +6,8) (¥ €[0,d0)),
where it is noted that k # j since j € supp™ (z — 2’). O
Proposition 3.6. Let f: R? — R U {+00} be a function in two variables with
dom f # 0. If f is supermodular, then its conjugate f* : R? — R U {+o00} is
submodular.
Proof. Tt suffices to show
FrON) + N ) S PO+ N ) (3.9)

for (A, ), (N, p') € R? with A > )\ and p > p/. We claim that

Ao+ uf = flo, B)] + No/ + 48 = f(o/, B)] < f* O\ ') + f2 (N, 1) (3.10)

holds for any (c, 3), (o, ") € R2. The inequality (3.9) is immediate from (3.10),
since the supremum of the left-hand side of (3.10) over (a, 8) and (¢/, 3’) coin-
cides with the left-hand side of (3.9).

We now prove (3.10). If « > o and § > ', we have f(a, ) + f(/,3") >
fla,B") + f(d/, B) by the supermodularity of f, and therefore

LHS of (3.10) < [Aa+ p'8" — f(a, B")] + [N/ + pB — f(<, 3)] < RHS of (3.10).
If a < o/, we have Aa + N < Ao/ + N and therefore

LHS of (3.10) < [Ma/ + p/'' — f(/, 3")] + [Na+ uB — f(a, 3)] < RHS of (3.10).
We can prove (3.10) similarly for the case of 8 < 3. |

This concludes the proof of (LF1) for f* when dom f is bounded.

3.2. Proof of ‘g€ L, = ¢* € M,”

Let g € £,,. It is easy to see that the conjugate function ¢* satisfies dom g* C
{z e R" | 2(N) =r}, where r € R is the value in (LF2) for g.

We firstly consider the case where dom ¢* = {z € R" | #(N) = r}, and prove
M-convexity for g®. The proof consists of the following steps. For z € R", we
define a function g[—z] : R* — RU{+o00} by g[—z](p) = g(p) — (p, z) (p € R™).

1. L-convexity of ¢ implies the following property (Lemma 3.7):
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(L-PO) Vz,y € R™ with argmin g[—z] # 0, argmin g[—y] # 0, Vi €
suppt (z —y), 3j € supp~ (z — y):
p(3) — p(i) < q(j) —q(i) (Vp € argmin g[—z], Vg € argmin g[—y]).
(3.11)
2. (L-P0) for g implies the following property for f = ¢®* (Lemma 3.9):
(M-EXC’) Vz,y € dom f, Vi € supp™ (z — y), 3j € supp™ (z — y):
f(@34,9) < +oo, f'(y54,§) < oo, and f'(x;4,1) + f'(y;4,§) <0,

where f'(z;j,4) = f'(z;x; — xs) for i,j € N.
3. (M-EXC) for f implies (M-EXC) for f (Theorem 3.10).

Lemma 3.7. Any g € L, satisfies the property (L-P0).

Proof. First we note that (N) = y(IN) = r, where r € R is the value in (LF2)
for g. It is easy to see that we have

p,qeED=pAq, pVq€eE D, peED, NDe R=p+A1e€D

for D = argmin g[—z] and D = argmin g[—y]. Therefore, the inequality (3.11)
can be rewritten as p(j) < ¢q(j) (Vp € Da, VYq € D), where

D, ={p€R"|p€ argming[—z], p(i) = 0},

Dy ={p€R" |p € argming[-y], p(i) = 0}.

Assume, to the contrary, that for any j € supp~(z — y), there exists a pair of
vectors p; € D, q; € D, such that p;(j) > ¢;(j). Putting

pe=\Apjli€swp (-}, a=Ng|Jjeswp (-1},

we have p, € Dy, q, € Dy, and supp™(z — y) C supp’ (p» — ¢y). We also put
ST =supp (px — qy), A = min{p.(j) — g, (j) | j € ST} (> 0). Then, L-convexity
of g implies

9(pe) + 9(ay) = g(pe — A1) +g(gy) + \r
> g((pe — A1)V qy) + g((pe — A1) A gy) + Ar

= g((pz — A1) V qy) + g(pa A (qy + A1)). (3.12)
Since
(e =30 va)) = {207 IR e
(pz A (gy + A1))(j) = {;i((]])) A 8 E }9\:\)’S+)’
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we have

((pz = A1) V gy, ) + (P2 A (gy + A1), 4) — (P2, T) — (qy. Y)

=AY W@ —2G)+ Do (ay() —pe()) (@) —y(5))

jes+ JEN\S+

> A (W) — =(5))
jEST

> A (y() —z(5) = Maz(i) —y()) > 0, (3.13)
veN\{i}

where the inequalities follow from supp~(z —y) € S*. From (3.12) and (3.13)
follows

gl=zl((px = A1) V ) + g[=vl(pa A (gy + A1) < g[=2](p2) + 9[—v](ay),
a contradiction to the fact that p, € argmin g[—z], ¢, € argmin g[—y]. O

Proposition 3.8 (cf. [20, Th. 23.4]). Let f : R" — R U {400} be a closed
proper convez function with dom f = {z € R" | (N) = r} for some r € R.
Then, for any x € dom f we have df(z) # O and f'(z;d) = sup{(p,d) | p €
df(x)} (d e R™).

Lemma 3.9. Let g : R — R U {400} be a closed proper convez function with
(L-P0O). If domg® = {x € R™ | z(N) = r} for some r € R, then g° satisfies
(M-EXC").

Proof. Let x,y € dom g® and i € supp™ (z—y). Since arg min g[—z] = dg*(z) and
argmin g[—y] = d¢°(y) hold, it follows from Proposition 3.8 that arg min g[—x] #
() and argmin g[—y] # 0. By the property (L-P0), there exists j € supp™ (z — y)
satisfying (3.11), implying

(9°) (x55.1) + (%) (y:,4)
= sup{p(j) — p(i) | p € argmin g[—z]} + sup{q(i) — ¢(j) | ¢ € argmin g[—yl}
<0,

where the equality is by Proposition 3.8. a

Theorem 3.10. For a closed proper convex function f : R — R U {400},
(M-EXC) <= (M-EXC').

Proof. Since the implication “(M-EXC) = (M-EXC’)” is obvious, we prove
below the reverse implication.

Let 2,y € dom f and i € supp™ (z—y). Then, there exists some j € supp™ (z—
y) and ag > 0 satisfying

flla—al=x)0,0 + Y+ al —x;)4.0) <0 (Ve €[0,a0]), (3.14)

which is shown later. Put p(a) = f(z—a(x; —x;))+ f(y+alx;i —x;)) (@ € R).
Then, the inequality (3.14) can be rewritten as ¢’'(;1) < 0 (Vo € [0, ap)),
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implying that ¢ is nonincreasing w.r.t. « in the interval [0, ap]. In particular, we
have ©(0) > ¢(a) (VYo € [0, ag]), i.e., the desired inequality (1.1) holds.

We now prove that (3.14) holds for some j € supp™ (z — y) and «p > 0. Put
J={jesupp (z—y) | f'(w:].1) < +oo, f'(y;i,j) < +oo},

which is nonempty by (M-EXC’). Then, there exists a sufficiently small 5 > 0
such that = — |J|8(x: — x;) € dom f, y + |J|B(xi — x;) € dom f for every j € J.
Putting

v = ﬁ >l 7180 — X)) = =~ [718xi + B x5,

jeJ jeJ
1
b= 131 S+ 180G —x) =y + 718xi — B xi»
JEJ jeJ

we have z., y. € dom f by the convexity of dom f, and supp™(z. — y.) =
supp™ (z — y), supp™ (2« — y«) = supp~ (z — y). By (M-EXC’) applied to Z.,yx
and i € supp™ (7. — y.), there exists jo € supp™ (7« — y.) with

fl(x*;jovi) < +007 fl(y*,l,]()) < +007 f/(x*a](]az)_‘_f,(y*alajo) S 0. (315)

Since f'(z+;jo,1) < +00, we have 2’ = z, +a(x, — Xxi) € dom f for some a > 0.
Since jo € supp™ (2’ — x) and supp~ (2’ — z) = {i}, the property (M-EXC’) for
2’ and z implies f'(z;jo,7) < 4oo. Similarly, we have f/(y;i,jo) < +o0. This
shows jg € J.

The inequality (3.15) and the convexity of f imply

f/(I*;i,jo) + f/(y*;j07i) = 0. (316)

For a € [0, 3/2], we put zo = x—a(x: —Xj,) € dom f and yo = y+a(xi—Xj,) €
dom f. The property (M-EXC’) implies

f'(wesi, jo) + f(was jo, i) <0 (3.17)
since jo € supp™ (2« — 7o) and supp (z.« — o) = {i}. Similarly, we have
f'(Yai i, jo) + [ (ys; Jos 1) < 0. (3.18)
From (3.16), (3.17), and (3.18) follows (3.14) with j = jo and ag = 3/2. O
This concludes the proof of M-convexity of g* when domg® = {z € R" |
z(N) =r}.

We then consider the general case, where the following characterization of
M-convex functions is used:

Theorem 3.11. Let f : R" — R U {400} be a closed proper convex function.
Then, f satisfies (M-EXC) if and only if it satisfies (M-EXCy):
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(M-EXCs) Va,y € dom f, Vi € supp™ (x — y), 3j € supp ™ (z — y):

f@)+f(y) = fla—ali—x;)+f (y+ala—xz)) (Ve € [0, (2(i)—y(0))/2t]),
where t = |supp~ (z — y)|.

The proof of Theorem 3.11 is given later. For fixed jo € N and ¢ € dom g with
q(jo) = 0, we define g, : R — RU{+oc} (k=1,2,...) by
_ [9() (if [p(i) = p(jo) — q(@)] < k for all i € N),
gk(p) = ;
+oo (otherwise).
It can be easily shown that each g is an L-convex function with dom gp = {z €
R" | z(N) = r}. Therefore, the discussion above shows that each g} is M-convex,

and therefore satisfies (M-EXCy) by Theorem 3.11. For z,y € dom ¢* (C dom g})
and i € supp™ (z — y), there exists some ji € supp~ (x — y) such that

g (@) +gry) = gz — alxi — x5,) + 9y + alxi — x5,))
(Vo € [0, (z(3) — y(i))/2t])

with ¢ = |supp ™ (z — y)|. Since supp (z — y) is a finite set, we may assume
that jr = j« (k = 1,2,...) for some j. € supp (x — y). Then, for any o €
[0, (z(i) — y(i))/2t] we have

9*(2) +¢°(y) = lim {gi(z) + g (y)}

v

Jim {gi (@ —alxi = x5.)) +gk(y +ala —x;.))}

g*(x —alxi —x5.)) +9°(y + alxi — x5.))-

Thus, (M-EXCj) holds for ¢g*, which shows M-convexity of g* by Theorem 3.11.
This concludes the proof of M-convexity of ¢g® for the general case.

We now prove Theorem 3.11. Since the implication “(M-EXCg) = (M-
EXC)” is obvious, we prove below the reverse implication. We use the following
property which is a restatement of Proposition 3.4 in terms of M-convex func-
tions.

Proposition 3.12. Let f : R — RU {400} be a closed proper M-convex func-
tion. For any x,y € R™ and i € N we have f(z)+ f(y) < f(&) + f(9), where &
and Y are given as

i) { ket (G €N\,

T(N) = X pen iy min{z(k), y(k)} (G =),
= { ) (€ N\ (i},
yJ y(N) — ZkeN\{i} max{z(k),y(k)} (j =1).
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Proof. By Proposition 2.2, there exists r € R with x(N) = r for all x € dom f.
We put N’ = N\ {i}, and define a function f : RN — R U {400} by f(z') =
f(z), where z € R"™ is the vector with x(N) = r given by z(j) = 2/(j) for
j € N'and 2(i) = r — > .y @'(j). Then, f is a closed proper M-convex
function; recall the definition in Section 2.1. Therefore, Proposition 3.4 for f
implies the inequality f(z) + f(y) < f(z) + f(y) when z(N) = y(N) = r. If
2(N) #r or y(N) #r, then we have f(z) + f(y) = +oo0 = f(2) + f (). O
Proof of “(M-EXC) = (M-EXCs)”. Let 2q,y0 € dom f, and i € supp™ (xq —
Yo). Put supp (z0 — yo) = {Jj1,J2,---,j¢}- For h = 1,2,... t, we recursively
define a function pp, : R = R U {+0o0}, ap € R, and zp,y, € R™ by

en(@) = f(zh-1—alxi = x;,)) + flyn—1+alxi = x;,)) (@ €R),
an = sup{a | pn(a) < ¢n(0),
a <minfrp—1(4) — Yn-1(), yn—10Jn) — Tn-1(jn)]/2},
xp = Tp—1 — op(Xi — th), Yn = Yn—1 + an(x; — th)-
Since each ¢y, is closed proper convex, Propositions 2.1 and 3.3 imply that a,
is well-defined and satisfies
Fan) + fyn) = en(an) = lim op(a)

<on(0) = flzn-1) + flyn—1) (h=1,2,...,¢). (3.19)
We have zp, yn, € dom f, in particular. Assume, to the contrary, that 22:1 ap <
(wo(i)—yo(7))/2. Since i € supp™ (x4 —y¢), there exist some j;, € supp ™ (zt—yz) C
supp (2o — yo) and a sufficiently small o > 0 such that
flae) + fye) = flae — alxi — x5.)) + fye + ol — XG,))- (3.20)
Putting 7, = 25, — a(xi — xj,,) and Z; = x4 — (X — X, ), We have
zp (k) = min{zp, (k), z:(k)}, 71 (k) = max{Zy(k), z¢(k)} (Vk € N\ {i}).

Therefore, Proposition 3.12 implies

fQen —alxi — x5,)) + f(ze) < fon) + f(2e — alxi — X4,))- (3.21)
Similarly, we have
Flyn +alxi — x5.)) + fye) < flyn) + Fye + alxi — x5n))- (3.22)

From (3.20), (3.21), and (3.22) follows
flan = alxs = x3.)) + Fyn + alxs = x3.)) < f(@n) + f(yn),

a contradiction to the definition of z; and y,. Hence, we have 22:1 ap =
(z0(7) — yo(7))/2. Let s be the index with oy = max{ay | 1 < h < t}. For
a € [0, as], we have

[f(zo — alxi = x5.)) = f(@o)] + [f (o + a(xi — x;.)) — f(wo)]

< [f@s—1 = alxi = x5.)) = fles—0)] + [f(ys—1 + alxi = x5,)) = f(ys—1)]

<0,

where the first inequality is by Proposition 3.12 and the second by (3.19) and
convexity of f. This shows (M-EXC;s) for f since as > (20(2) — yo(i))/2t. O
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